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ScienceDirect
Developmental windows of environmental sensitivity open and

close throughout ontogeny, which can lead to vastly different

effects of stress that depend upon age at exposure. It is well

established that stress in adulthood can catalyze mental illness,

but the effects of stress exposure during early life stages on the

emergence and persistence of psychopathology remain

unclear. Stress response systems undergo maturational

changes that differ between early life and adolescence, and

stress exposure during these two stages can have varying or

even opposing consequences that persist into adulthood. In

this review, we discuss clinical and rodent studies of

developmental stages that seem to have distinct sensitivities to

stress—early life and adolescence. We review the effects of

stress during these two developmental periods on adult

phenotype and risk for common stress-related disorders:

depression, anxiety and posttraumatic stress disorder. We

conclude by discussing challenges and recommendations for

future research to investigate which features of developmental

stress, or individual phenotype, may predict relative risk for

common psychopathologies.
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Introduction
Windows of sensitivity for developing systems open and

close throughout ontogeny and stress can have vastly

differing effects depending upon age at exposure.
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Decades of studies have demonstrated lasting effects

of stress exposure before reproductive maturation on

adult psychopathology ([1,77]). Among the various devel-

opmental periods the two key periods, early life (before

weaning in mammals) and adolescence, share heightened

phenotypic plasticity compared with other stages. Yet,

studies show that stress exposure during these stages can

have varying or even conflicting consequences [2] under-

scoring the importance of understanding the specific

effects of stress exposure during both of these develop-

mental periods. Both the nature and severity of conse-

quences of stress exposure can be dependent upon age of

exposure, for example, sexualized behavior occurs in

nearly 80% of children sexually abused between 0–3

years of age, but this symptom drops nearly by half for

children sexually abused between 13–17 years of age [3].

Conversely, recklessness can be linked to trauma during

adolescence but not during early childhood ([78]). Simi-

larly, with respect to hormonal stress axis function, retro-

spectively reported perceived stress between 0–5 years of

age is correlated with increased CRF level in adulthood,

whereas perceived stress between 6–13 years of age is

correlated with decreased CRF levels in adulthood (in

cerebrospinal fluid at rest; [4]). The impacts of stress in

early life and adolescence may differ for at least three

reasons: first, before weaning animals may produce less

glucocorticoid “stress” hormone in response to aversive

stimuli because of a period of hyporesponsivity to stress in

early life maintained by the presence of the dam [5,2].

Yet, also in early life, CRF binding sites peak in rats at

levels 300–600% higher than in adolescence (Figure 1, [

6,7,79]). A second reason is that brain areas involved in

stress regulation undergo distinct maturational processes

in early life and adolescence in both rats and humans

(outlined for rats in Figure 1). Finally, in humans, ado-

lescents can perceive specific events as more stressful

compared with children and adults [7].

Given that link between adult stress exposure and mental

illness has been discussed extensively [8,9�], but the

differential capacity for developmental stress at various

stages to shape adult risk for psychopathology remains

relatively underexplored, we focus here on two develop-

mental stages that seem to have distinct vulnerabilities to

stress, early life and adolescence. We discuss the relation-

ship between the consequences of stress exposure during

these two stages and symptomatology of common mental

illnesses, depression, anxiety, and posttraumatic stress

disorder, using clinical and rodent studies. To do this,
www.sciencedirect.com
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Timeline depicts developmental changes in behavior, physiology, and the brain, with an emphasis on early life and adolescence in rodents

[69,70,71��,72,73��,74,75]. The age range denoted as adolescence varies across studies, but is generally between 28 to 42 days of age [7]. Given

that a greater amount of data are available for male rats than for females, the timeline disproportionally represents male development. The Z

breaks in the timeline at greater than 60 days of age illustrate that the timeline has been truncated.
we focus primarily on stress response systems, such as the

hypothalamic-pituitary-adrenal (HPA) axis, and its prod-

uct—glucocorticoid hormones, as their dysregulation has

been extensively linked to disorders discussed here [2].

The review concludes with discussion of the character-

istics of an early environment or phenotype that may

affect the relative risk of specific pathologies and recom-

mendations for future studies of the relationship between

developmental stress and psychopathology.

Stress in early life can affect stress responses
systems in adulthood
It is well established that exposure to stress in early life

can alter responses to stress in adulthood [5]. During early

life, neural and physiological systems regulating stress

responses, including the hypothalamic-pituitary-axis,

undergo maturation (Figure 1). Early maternal separation

stress in rodents can have widespread lasting effects

including exaggerated behavioral and hormonal

responses to stress, increased CRF mRNA (in the peri-

ventricular nucleus, amygdala, and locus coeruleus), and

increased CRF binding sites (in the amygdala, hypothal-

amus, hippocampus, and cerebellum) [10,11,2].

These effects of early maternal separation can generalize

across species and some types of stress: voles exposed to

social isolation in early in life exhibit increases in CRF

mRNA in the hypothalamus in adulthood [12] and bonnet

macaques reared by mothers exposed to unpredictable

foraging demands also exhibit elevated CRF in adulthood

[13]. Children separated from both parents during WWII

can show enhanced cortisol responses to social stress in

adulthood, and these effects are greater if parental
www.sciencedirect.com 
separation occurred between 2–7 years of age than if

separation occurred after seven years of age [14]. Despite

similar findings across species, variation in stress type and

within maternal separation procedures can contribute to

variation in outcomes (reviewed in Lehmann and Feldon

[15]. For example, exposure to a rodent model of early

parental abuse, in which dams drag or throw neonatal

pups, can decrease brain-derived neurotrophic factor

(BDNF) mRNA expression in the hippocampus, amyg-

dala, and prefrontal cortex [16,80]), while maternal sepa-

ration can reduce BDNF mRNA expression in the hip-

pocampus but not the prefrontal cortex ([81]). In humans,

stress type can also shape lasting effects of early stress, for

example, abused infants have a highly negative affect but

neglected infants exhibit blunted affect ([82] Hiatt, 1984;

[83]). These findings suggest that type of stress should be

considered when generalizing and translating potential

effects of early stress exposure.

While some effects of early stress are immediate, others

only become apparent after additional stress exposure in

adulthood. For example, maternally separated rats do not

differ from unstressed rats in a forced swim test, but, if

exposed to chronic restraint stress in adulthood, mater-

nally separated rats show increased depressive-like

behavior compared with rats reared without stress [17].

Similarly, maternal separation increases vulnerability to

adverse effects of inescapable footshocks in adulthood in

Wistar rats [18]. In addition to effects of early stress that

are precipitated by subsequent stress, there are effects of

early stress that can manifest after a delay, in the apparent

absence of secondary stress, and may be triggered by

developmental changes or environmental cues (termed
Current Opinion in Behavioral Sciences 2017, 14:86–93
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Predictive Adaptive Responses [19��]). It is suggested

that effects of early stress may be delayed or triggered by

secondary stress to allow organisms a wider range of

possible phenotypes or to enable effects of stress to

manifest during specific developmental stages [19��].
For example, environmental conditions in early life deter-

mine meadow vole coat thickness, which manifests after

weaning and shapes winter preparedness [20]. Lasting

effects of early stress, whether persistent or triggered by

secondary stress, can increase anxiety-like and depressive

behaviors in adulthood [21,22,17].

ELS and adult psychopathology
Epidemiological studies suggest that exposure to early

life stress increases the risk of exposure to subsequent

trauma in adulthood, and of anxiety, depression and

posttraumatic stress disorder (PTSD) [23�,24��]. Early

stress exposure can increase anxiety-like behavior in adult

rodents across social, exploratory, and sexual contexts

[21,25,22], but the relationship between anxiety-like

behavior in rodents and human pathological anxiety is

not straight forward. Converging evidence from clinical

and animal studies suggests that early life stress can

induce depression-like behavioral and neurological/phys-

iological changes in stress response systems [24��]. For

example, individuals with major depressive disorder can

exhibit elevated basal glucocorticoids, increased CRF in

cerebrospinal fluid ([84]), and blunted daily rhythms of

cortisol ([85]). These effects have also been reported in

adult rats exposed to maternal separation or low levels of

maternal licking and grooming in early life

([22,26,27,28,86]). Maternal separation in rodents can also

shape behaviors associated with depression in adulthood,

including anhedonia in a sucrose preference test and

behavioral despair in a forced swim test, though some

report these effects only after secondary restraint stress in

adulthood [21,29]. Further, the combined effects of

maternal separation and secondary stress in adulthood

can be attenuated by application of a selective serotonin

reuptake inhibitor (SSRI) or environmental enrichment

[21,11]. Although there is not a clear parallel for maternal

separation stress in humans, infants given minimal physi-

cal and social stimulation in a Romanian orphanage also

show elevated basal cortisol and disrupted daily rhythms

of cortisol that can persist for years after adoption, and

these effects are positively correlated with the duration of

time in the orphanage [30]. Together these evidences

may provide the strongest link between early life stress

and vulnerability to a specific psychopathology in adult-

hood, depression.

There is, however, notable similarity between the lasting

effects of early stress and some features of PTSD. For

example, early stress in rodents can enhance startle

responses and glucocorticoid receptor expression in adult-

hood (Lui et al., 1997; [22], and, following secondary

stress as an adult, enhance fearfulness and anxiety-like
Current Opinion in Behavioral Sciences 2017, 14:86–93 
behavior [31]. While a number of systems affected by

early stress may contribute to an increased risk of psy-

chopathology, effects across several systems have been

linked to “programming” of the adult phenotype through

epigenetic regulation of gene expression, such as DNA

methylation of FKBP5, the BDNF gene, and the gluco-

corticoid receptor (GR) gene, NR3C1 [16,23�,73]. The

latter, in turn, can affect negative feedback suppression of

glucocorticoid production, which may increase vulnera-

bility to lasting effects of trauma in adulthood. Decreases

in basal cortisol and enhanced glucocorticoid negative

feedback are often, but not always, found in PTSD

patients, and some posit that this inconsistency might

reflect lasting effects of exposure to early life stress in

PTSD populations, rather than direct effects of trauma in

adulthood [23�].

Similarly, studies of gene x environment interactions

have generated evidence that interactions between

genetic polymorphisms that affect neuron signaling (e.
g., serotoninergic and GABAergic cell functioning) and

environmental features during development can either

promote or protect individuals from developing internal-

izing disorders such as anxiety and depression (e.g., early

life stress and social support, respectively; [32]). For

example, adults that express the 22/23EK variant of

the NR3C1 gene and report exposure to stress during

development (before age 18) are more likely to exhibit

clinically relevant depressive symptoms, as well as

decreased free cortisol [33,32]. However, in the absence

of developmental stress this polymorphism conveyed no

increased risk across any of the clinical/physiological

features measured [33]. Another important gene x envi-

ronment interaction is exemplified by heterozygous

expression of the y2 subunit gene of the GABAA receptor,

which causes deficits in GABAergic transmission and can

increase anxiety-like behavior in adult mice as well as

enhanced trace fear conditioning [34]. Deficits in

GABAergic transmission are anxiogenic in humans and

rodents; the y2 subunit is present in humans, but much is

unknown about the functional significance of GABAA

receptor subtypes in humans [35,36]. Further, GABAA

receptors are reciprocally modulated by stress hormones,

and maternal separation in rats can decrease GABA

release in the adult hippocampus and enhance glucocor-

ticoid levels [37]. In summary, accumulating evidence

suggests that the effects of early stress exposure on adult

psychopathology, particularly with respect to internaliz-

ing disorders, can be precipitated by genetic polymor-

phisms or unmasked by secondary stress in adulthood

[21,22].

Stress in adolescence can affect stress
responses systems in adulthood
Exposure to stress in adolescence can shape maturation of

stress response systems and affect neurophysiological

functioning in adulthood [38,39��]. Adverse experiences
www.sciencedirect.com
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during adolescence can also affect stress response systems

in adulthood including basal, reactive, and circadian

levels of glucocorticoids production, glucocorticoid and

mineralocorticoid receptor expression in the hippocam-

pus, and CRF levels, however the nature of these effects

can vary greatly across studies. For example, stress

responses can be enhanced [40–42], attenuated [40], or

unaffected [42–44] following stress exposure in adoles-

cence, with variations in stress treatments (e.g., acute vs.

chronic, repeated vs. unpredictable, social vs. physical vs.

predation) or age at stress exposure, likely accounting

for much of the variability in outcomes (reviewed in

McCormick et al. [38,71]. Rodent studies of stress in

adolescence span 21–84 days of age (which includes

pre-puberty, puberty, and post-puberty, reviewed in

Refs. [7,38,45��]). This wide range becomes especially

salient when considering that one day of rat’s postnatal

life is suggested to be equivalent to one month for a

human [46]. Variability in age range, animal species, and

stress treatment can lead to conflicting findings as exem-

plified in the following studies: in the first, CD1 mice

were exposed to social partner changes from 28–77 days

of age, and no effect was found on CRF mRNA in the

paraventricular nucleus of the hypothalamus (PVN) [47].

The second study exposed Long–Evans rats to social

instability stress (partner change and isolation) from

30–45 days of age and found increased CRF mRNA in

the PVN and reduced CRF responsivity to challenge [48].

To date, the effects of stress in adolescence on respon-

sivity to stress in adulthood are still not well established,

but a preponderance of studies show no lasting effects of

stress in adolescence on HPA reactivity, suggesting that

adolescence may be less susceptible to programming

effects of stress on HPA axis reactivity compared with

early life [38], though further studies are needed addres-

sing other elements of the stress response systems.

Adolescent stress and adult psychopathology
The link between stress in adolescence and adult psy-

chopathology has not been consistently demonstrated in

epidemiologic studies. Early studies of natural disasters

have reported that adolescents can be both more ([87])

and less vulnerable to trauma [49]. For example, two years

after exposure to a dam collapse children showed greater

PTSD symptomatology if they were exposed between

the ages of 8–15 than if they were exposed between 2–7

years of age [49]. However, children exposed to an

Australian bushfire, that were on average age at expo-

sure, exhibited PTSD symptoms that were inversely

correlated with age when measured 8 months after the

fire, but positively correlated with both age and cumula-

tive stress after 26 months [50].

Other studies suggest that the effects of adolescent stress

on depressive and PTSD symptoms might be dose-

dependent and vary between males and females [49];

Lonigan et al., 1994). In adolescents exposed to
www.sciencedirect.com 
Hurricane Hugo, continued displacement was positively

correlated with PTSD symptoms three months after the

disaster (Lonigan et al., 1994), and in high school students

depressive symptoms can be positively correlated with

the quantity of past year adverse life in a dose-dependent

fashion [51]. Similarly, it was reported that developmental

exposure to stress between the ages of 0–18 can have

dose-dependent effects on risk for depression in adult-

hood, but the relative effects of stress in early life and in

adolescence are unclear (Chapman et al., 2004). Rodent

models support a link between adolescent stress exposure

and adult psychopathology, demonstrating that exposure

to chronic stress in adolescence can cause cognitive and

behavioral changes consistent with depression in adult-

hood, including a negative ambiguous judgment bias,

increased response to reward devaluation [52], and, in

some conditions, increased anhedonia (sucrose prefer-

ence test) and behavioral despair, with strong effects of

sex (reviewed in McCormick and Green [45��]. Compli-

cating this, early life stress can increase drug and alcohol

abuse in adolescence and adulthood, dependent upon sex

and genotype, which can increase risk of subsequent

trauma exposure and adversely affect trauma responses

[53].

Sexes appear to differ in their susceptibility to lasting

effects of stress in adolescence. In humans, adolescent

females appear to be more reactive to stressors compared

with adolescent males [54,55]. Similarly, in some animal

studies, females exhibit lasting effects from stress while

males appear unaffected; for example, exposure to

chronic variable stress during adolescence decreases both

sucrose consumption (suggesting anhedonia) and activity

in a forced swim test in adulthood in female but not male

rats [41,56]. Female rats are also more strongly affected by

social defeat stress in adolescence; adult females that

were exposed to social defeat in adolescence show

increased anxiety-like behavior, including fewer

approaches of a conspecific and increased time spent in

closed arms in an elevated plus maze, compared with

adult males with the same stress history [57]. These

findings suggest that females may be more sensitive to

lasting effects of stress in adolescence on anxiety and

depressive behaviors in adulthood.

Lasting effects of stress during development
on stress responsivity and risk of pathology
Although studies of stress in adolescence are accruing

quickly, currently less is known about the lasting effects

of adolescent stress on general stress reactivity and psy-

chopathology compared with stress in early life. Decades

of studies have shown that maternal separation in early

life can enhance stress responsivity in adulthood, includ-

ing HPA axis activity (reviewed in Refs. [5,11]. As we

briefly reviewed above, the effects of stress in adoles-

cence on stress responsivity in adulthood are less clear,

but studies of stress in adolescence that vary in stress
Current Opinion in Behavioral Sciences 2017, 14:86–93
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type, length, and chronicity have found no lasting changes

in HPA reactivity, suggesting that adolescence may be

less susceptible to programming of HPA stress reactivity

compared with early life [38]. Direct comparison of stress

in early life and adolescence reveals both similarities

and differences in HPA parameters linked to adult psy-

chopathology. For example, both maternal separation and

stress in adolescence have been linked to decreased

glucocorticoid receptor (GR) mRNA in the hippocampus

[5,47,38]. These effects are consistent with depression,

which is marked by reduced GR function that can be

reversed with SSRIs [58]. These findings further sup-

port the link between developmental stress exposure

and depression. Conversely, increased CRF mRNA in

the hypothalamus has been shown to result from early

stress [5] but not stress in adolescence [47], and

increases in CRF are associated with both depression

and PTSD [27]. Distinct windows of development

in GABAergic systems also appear to play a role in

adult psychopathology; pharmaceutical potentiation of

GABAA receptors before weaning can increase adult

anxiety-like behavior in the elevated plus maze, yet the

same treatment in adolescence (29–35 days of age in

mice) increases depression-linked behavior but not

anxiety-like behavior [59]. These findings suggest that

age-specific consequences of stress exposure are linked

to maturational windows, such as the peaking of CRF

binding sites in early life which decline before adoles-

cence (Figure 1).

It is important to note that the effects of stress in adoles-

cence can be shaped by earlier exposure to stress, just as

the effects of early stress can be modulated by prenatal

stress [26,39��]. For example, recent evidence suggests

that offspring of individuals with PTSD can have physi-

ological hallmarks of PTSD in early life that may be

linked to epigenetic effects including methylation of the

NR3C1 gene promoter [60,61��]. This is consistent with

evidence that suggests that the risk for specific psyco-

pathologies can be shaped by genetic or environmental

influences, for example, children exposed to stress

between 0–18 years of age can develop depressive or

anxious symptoms, and some of this variability can be

explained by polymorphisms of the BDNF Val66Met gene

[62] or socioeconomic status [63��]. While some suggest

that children exposed to trauma have initially non-specific

trauma responses that become more specific over time

[64,65], it is also possible that more specific risks con-

veyed by developmental trauma are not yet understood,

and may manifest after a delay because of links to

ontogenetic changes such as puberty ([19]). For example,

early life stress can affect cortisol-testosterone coupling

between 11-15 years of age in girls, even though the role

of testosterone is minimal in early life for women

. Together these findings suggest that the effects of stress

should be contextualized within an individual’s history of

stress [66] and, potentially, the stress history of their
Current Opinion in Behavioral Sciences 2017, 14:86–93 
parents [60,61��], further, multiple outcomes of stress

should be evaluated longitudinally and simultaneously.

Summary
The preponderance of evidence suggests that stress

exposure in early life and adolescence can cause lasting

effectson stress responsivity systems, thoughsome systems

may be more vulnerable in early life than in adolescence.

For example, early maternal separation is associated with

increased CRF signaling and binge alcohol consumption

[67��], while stress in adolescence links to increased alcohol

consumption only in individuals with the C-allele of

CRF receptor 1, and otherwise has minimal effect on

CRF signaling [38,68]. This also suggests that individual

variation may have a greater role in determining the con-

sequences of stress in adolescence than in early life.

Epidemiologically, developmental stress can contribute

to numerous pathologies. The pathological specificity of

stress in development is largely unknown, though some of

the strongest evidence supports a link with depression

[62,38].

There is strong evidence of a link between PTSD-like

symptomatology and traumatic experiences in early life

and adolescence [50,49,61��], but these effects generally

manifest quickly after trauma and may involve different

mechanisms than those implicated in the lasting effects of

stress in early life and adolescence on depression. More

research is required to address the potential link between

developmental stress and subsequent risk for posttrau-

matic psychopathology.

Overall, more comprehensive studies are required to

address many remaining questions. The existing literature

suggests that studying the effects of childhood trauma

without examining subgroups between 0–18 years of age

might not be informative enough, as stress in early life and

adolescence can lead to opposing findings [4,2]. Further,

consideration of history of stress exposure (parental,

in utero, early childhood) might be required to fully ascer-

tain the potential contributions of environmental and

epigenetic variables. Similarly, comprehensive examina-

tion of potential outcomes (depressive, anxiety, PTSD,

substance use) will be required both in epidemiologic and

mechanistic (animal model) studies to address issues of

pathological specificity of developmental risks.
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